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FINDING THE INTERSECTION OF TWO CONVEX POLYHEDRA
D. E. Muller* and F. P, Prepautaf

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

~ Abstract

Given two convex polyhedra in three-dimensional space, we develop
an algorithm to (i) test whether their intersection is empty, and (ii)
if so to find a separating plane, while (iii) if not to find a point in
the intersection and explicitly construct their intersection polyhedron.
The algorithm runs in time O(nlogn), where n is the sum of the numbers
of vertices of the two polyhedra. The part of the algorithm concerned
with (iii) (constructing the intersection) is based upon the fact that
if a point in the intersection is known, then the entire intersection is
obtained from the convex hull of suitable geometric duals of the two

polyhedra taken with respect to this point.
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Finding the intersection of two convex polyhedra in three-dimensional
space is a classical problem in computational geometry 1]. a simple but
time-consuming solution to this problem is known, and it is s0 trivi;l

that it i{s not even worth a literature reference. It goes as follows. |

i Let @ and & be two convex polyhedra, test each face of 7 against each face
of 8 to see if they intersect; if no intersectioan is found, then the
intersection of the two polyhedra is empty, otherwise it can be simply

constructed. It is clear that such an algorithm could use O(nz) operations

i {f n is the sum of the numbers of vertices of & and &8, |

: The search for a more efficient procedure has in the past met with no

success. Several facts, however, suggested that a more efficient method

i should exist: ftrnt.'tt is vell-known that two polygons in the plane can

be intersected {n time li{near in the sum of their aumbers of vertices [233

second, several analogies exist between the plane and the space, i.e.,
convex hulls of n-point sets (3] and maxima of sets of n vectors [4) can be

found in time O(nlogn) i{n both two and three dimensions. In spite of this,

no generalization of the polygon {ntersection algorithm has been found.

In special cases, however, better than quadratic time methods have been

known for some time. Specifically, after the development of the Lee-

Preparata algorithm for locating a point in a planar subdivision [5], it

was roalixod(l) that the intersection of two polyhedra can be found in [

time O(nlogzn) 1f a vertex of one polyhedron lies inside the other ﬂ

polyhedron.

(1) d
Private communications between M. I. Shamos and F. P. Preparata, :

May 1976, See also (1] p. 160.
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Alternately (see [1], p. 162), Shamos conjectured that polyhedron .
intersection could be obtained as a merge step of a divide-and-conquer
algorithm for the intersection of half-spaces.

In this paper we present an algorithm for solving the problem of
intersecting two polyhedra in time O(nlogn). The algorithm tests whether
the intersection is empty and, if not, explicitly constructs it. The f
approach is based on the fact that, if a point p in the intersection is |
known, the intersection can be obtained through geometric dualization.
Specifically, the two polyhedra are both transformed into their geometric
duals with respect to p, and the convex hull of the dual,which can be

found in time O(nlogn), is the dual of the intersection polyhedron

(Section 3). When such a special point p is not available,by deploying
known techniques in time O(nlogn) we can test whether the inter-
section is nonempty and, if so, obtain a point in the intersection
(Section 4). The algorithm requires that each polyhedron be represented i
by a very versatile data structure called the doubly connected edge list,

which can be obtained from a more conventional representation in time

linear in the number of vertices (Section 2).




2. Derivation of a Doubly Connected Edge List for a Planar Graph

Let V = [vl,...,vn] and E = {‘1”"'°n} be the sets of vertices and
edges respectively, of a planar graph embedded in the plane without
crossing edges. We assume that (V,E) be represented as follows. To

vertex v.€ V there corresponds cell E[j] of an array H[l:n], which

i
contains a pointer to the first term of the cyclic list of the edges
incident on vj, arranged in the order in which they appear as one proceeds
counterclockwise around vj. The latter lists are realized by means of two
arrays VERTEX[1:Rm) and NEXT{1:2m] so that (VERTEX(1],NEXT(i]) is the format
of the list nodes. This representation of the graph (V,E) is precisely

the one obtained by the algorithm of Preparata and Hong [ 3] which con-
structs the convex hull of a set of points in three dimensions: indeed the
surface of a convex polyhedron is topologically a planar graph. We shall
call this collection of lists the vertex-to-edge representation of a planar
graph.

Although the vertex-to-edge list is one of the most commonly used
representations for a planar graph, it has the disadvantage that the dual
graph, i.e., the get of faces of the original graph, is not readily available.
For this one would have to develop the face-to-edge representation of
the original graph in which each face refers to a cyclically ordered list
of edges which enclose it.

A more convenient representation for this purpose is one which we shall

call the doubly connected edge list (DCEL), from which we can obtain

equally easily information either about the edges incident on a vertex
or the edges enclosing a face. We will now describe the DCEL and give in an

appendix the algorithm by which to obtain it from the more conventional
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vertex-to-edge representation of the graph in time proportional to the 1

number n of vertices.

The main component of the DCEL of a planar graph (V,E) is the edge |
node. There is a one-to-one correspondence between edges and edge nodes, |
i.e., each edge is represented only once, whereas in the vertex-to-edge
list each edge appeared twice. An edge node consists of four information

fields V1, V2, Fl, and F2 and two pointer fields Pl and P2: therefore the

corresponding data structure is easily implemented with six arrays with
the same names, each consisting of m cells. The meanings of these

fields are as follows. The field V1 contains the name of the vertex which
is the origin of the edge , whereas V2 contains the terminus; in this
manner, the edge receives a conventional orientation. The field Fl and

F2 contain the names of the faces which lie respectively on the left and
on the right of the edge oriented from V1 to V2, The pointer P1 (fZ)
points to the edge node containing the first edge encountered after

V1(V2) when one proceeds counterclockwise around V1 (V2). Names of

faces and vertices may be taken as integers. As an example, a fragment of
a graph and the corresponding fragment of the DCEL is shown in figure 1.

It is now easy to see how the edges incident on a given vertex or

the edges enclosing a given face can be obtained from the DCEL. If the ;
graph has n vertices and f faces, we can assume we have two arrays
BV(1:n] and BF(1:£f] of headers of the vertex and face lists: these arrays
can be filled by a scan of arrays V1 and Fl in time O(n). The

following straightforward procedure, VERTEX(] ), obtains the sequence of

edges incident on v, as a sequence of addresses stored in an array A.




vl V2 Fl F2 Pl P2

1
2
219 3L 2 1% 1%
a3 ) A
b 8 IS 3 2
Figure 1. 1Illustration of the DCEL.
VERTEX(j)
1. begin A[l]-ao-a-nv[j],i-z
2. 1f Vi[al] = j then a - P1[a] else a - P2[a]
3. Uhileaﬁaogg
4, begin A(1] - a
S. If vi(al = j then a ~ Pl[a] else a -~ P2[a)
6. 1 =~ i+l
end
end

Clearly VERTEX()) runs in time proportional to the number of edges incident
on vj. Analogously, we can develop a procedure, FACE(j), which obtains the
sequence of edges enclosing fj, by replacing HV and V1 with HF and Fl,

respectively, in the above procedure VERTEX (j). Notice that the procedure

—
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VERTEX traces the edges counterclockwise about a vertex while FACE traces

them clockwise about a face.

In an appendix to this paper we shall show that the DCEL of a planar
graph can be obtained from its vertex-to-edge list in time linear in the

number of vertices.




3. Finding the Intersection of Two Polyhedra when a Point in the
Intersection is Knowm.

Assume that the two coavex polyhedra & and 3 in three-dimensional
Euclidean space are represented by DCEL's. They are taken as having
vertex sets jj and V_ and face sets 37 and FG respectively. With each

vertex v £ va,u VB we associate its three Cartesian coordinates

a
bounded by its plane and containing the corresponding polyhedron., The

xl(v), xz(v), x3(v). With each face £ € F_ U F@ we associate 2 half-space

half-space of £ is described by the inequality
nl(f)x1 + nz(f)x2 + n3(f)33 +d(f) 2 0 (1)

where n

1(f), nz(f), n3(f) and d(f) are four parameters characteristic of £,
normalized so that d(f) is either 1, 0, or -1, Our cbjective is to obtain
a DCEL for the intersection of & and & along with the coordinates of its

vertices and the parameters for its faces,

In this portion of the analysis it is assumed that a point in the
intersection of 7 and £ is known: the prcblem of finding such a point
will be discussed later, Without loss of gemerality, the point in the
intersection will be taken as the origin, since if it is mot the origia a
simple translaticn of coordinates will make it the origin. We begin by
assuming that the origin is actually in the interior of each of the two
polyhedra and hence in the interior of their intersection. In this case
each face f € 57 u :3 represents a half-space of the form
nl(f)xl + nz(f)x2 + n3(£)x3+l 2 0. In other words, the ‘constant d(f) = 1
for all faces f£.

Now, for each of the polyhedra & or & there is a correspousiang polyhedron

D) D
(®) or E( , respectively, which we shall call its dual. The dual‘7( ) of 4

a

is obtained by reinterpreting the coefficients nl(f), nz(f), ns(f) of each




face £ € 37 as the coordinates of a corresponding vertex Vs of ﬂ(n).

Conversaly, the ccordinates xl(v), xz(v), x3(v) of each vertex of 27 are

reinterpreted as the coefficients of a correspouding face fv of QKDZ This

transformation may be regarded as a coaventional dualizatioa zbout the

anit sphere with ceater at the origin, where points at distance 2 from the

origin are transformed into planes at distance 1/1 from the origin and

vice versa ([7], p.233). A similar procedure allows us to form the dual of 5.
We note that this dualization procedure is ouly possible beczause the

origin is in the interior of the polyhedroa. Ia this case, the dual.-is also

a convex polyhedrcn containing the origin. If the origin is not in the interior,

then some of the imequalities (1) would require d(f) = J or -1, and we have

not defined dual points for such half-~spaces.

(D)

(D
and E§ 4 respectively. It is

Let Y;P) and VéP) be the vertex sets of &
D)
nd &

D .
easily seen that the coavex hull of the union of &‘ ) a is the dual

of the intersection of Z and 5. Hence, in order to find the intersecticnm

0f 7 and 7 ve may simply use the algorithm of Preparata aad Foag L1] to find
D, 5 (D)

the coavex hull of the set of vertices 27 J %7 in time Q(alogn), and

upon taking the dual of the result we obtain the desired polyhedrca.




Now let us assume that the given point in the intersection of & and /3,

i.e., the origin, i{s not in the interior of their intersection. Then
certain faces [ € Fq U F o have d(f) = 0. In fact, these are exactly the
faces which pass through the origin. Let F' be the set of such faces.

To each face f' < F' there is a corresponding inequality of the form
-t ' ' >
nl(t )x1 + nz(f )x2 + n3(f )x3 0, ()

obtained from (1) by replacing d(f') by 0. A point x in the interior of

d N 8 must strictly satisfy all inequalites of type (1) with f € Fj U FE’
that is, none can be an equality. Such a point x exists if and only if

all inequalities of type (2) with f£' € F' can be satisfied strictly by some
point. To determine whether there is such a point we first fix x3 = 1 and

write the strict form of (2) as
ny (£9%; + a,(£1)x, > - ny(£"). @Y

Here, by normalizing the coefficients, we can take - n3(f') as either 1, 0,
or -1,

The question of whether or not (2') can be satisfied for every
£' € F' is a two-dimensional problem of the type we are solving here for
the three-dimensional case. The inequalities of (2') collectively

represent a two-dimensional convex set which can be found ([1), p.158) in

time O(nlogn). Actually, a faster computation of this convex set is possible:

the inequalities of (2') can be partitioned into two sets, depending upon
which of the two polyhedra they pertain to; each such set corresponds to a
polygon in the plane Xy = 1, and the desired coanvex set is the intersection

of the two polygons. It {s known that finding these polygons and their

’

il ki
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intersection runs in time at most proportional to n (1].

If no solution is found in the above case, the case x3 = -1 must also be
tried. This problem is similar to the previous one except that -n3(f') is
replaced by na(f') in all the inequalities (2').

Let us suppose that we have been able to strictly satisfy all inequalities

of the type (2) with x, = 1 or -1 using the above method. Clearly, they will

3
remain satisfied if the vector x is multipled by a positive scalar. To
strictly satisfy all the remaining inequalities in (1) whose right hand sides
are all 1, we simply choose such a scalar which makes all the left hand
sides less than 1. The resulting point is in the interior of &4 N B.

Tf it is impossible to strictly satisfy all the inequalities of (2),

then any one which cannot be strictly satisfied, say

nl(f")x1 +n f")x2 + n3(f")x3 =0

9 (
represents a plane through the origin which contains the intersection of

d N B. Thus, the intersection of @ and & may be found entirely within this
plane. This problem is analogous to the one discussed before and can be solved,

as we saw, in time O(n).
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4. Finding a Point in the Intersection of Two Polyhedra

In the preceding section we have shown that the intersection of two
convex polyhedra can be obtained when a point in the intersection is known.
Thus, if the intersection is nonempty, all that is needed is to find one
such point. The objective of this section is the implementation of this
task.

Given a convex polyhedron &, a plane is called a plane of support of
@ if it has at least one point in common with & and all interior points of
a lie on one side of the plane. Hereafter we shall only consider planes
of support parallel to the xs-axis and briefly refer to them as vertical.
The intersection of & with its vertical planes of support is, in general,
an annular region R(Z) of the surface @ which,in the absence of degeneracies,
reduces to a cycle of edges. The projection of R(?) on the (xl,xz) plane is

a convex polygon @* (figure 2), which is the convex hull of the projections

Cosllbl d survuiviic: ! v

of the points of & on this plane.

3

o |

Figure 2. A convex polyhedron &, the annular region R(4) and the projection
polygon (7%,
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The region R(&Z) is easily obtained from the DCEL description of

d as follows. For any face fi of 4, the normal to fi is the vector
(ny(£;),0y(E,),05(E,)) . Tt is perpendicular to £ and points toward the
interior of &. Given any edge e of &, let fi and fj be its adjacent

faces, Then e € R(Z) if and only if
n,(£,) °n3(£j) s o. )

Therefore, we begin by scanning the edge set of & until we find an edge
e which belongs to R(J), by verifying condition (3 ). At this point, we
select one of the two vertices of e, call it v. Among the edges incident
on v there are either one or two new edges, different from e, which
belong to R(Z) and can be easily found by applying the VERTEX procedure
described earlier, to the DCEL. Thus we can advance in the construction
of R(&), which will be completed upon re-encountering the initial edge e,
Once R(Z) has been computed, & is trivially obtained. All of these
operations can be carried out in time proportional to the number Ile of
the vertices of &. Thus we have the first steps of the algorithm,

given polyhedra & and 3 with |V7l + |V@| = n:
e *
Step 1. Find & and 3 . (This step runs in time O(n).)

Step 2. Using Shamos-Hoey's polygon intersection algorithm [1], find
* *
the intersection of & and & . 1If the intersection is empty, halt, for !
* *
@ N B is also empty. Else let p* be a point in the intersection of 7 and 2 .

r

(This step runs in time O(n), according to _1].) } |

- L ! *
Under the projection of & to J , p* - ;xl(p*\,xz(p ) is in




s |

general the image of a vertical segment of &7 which reduces to a single

L R——— - S

point in some cases. In any case, the preimage of p* in 7 is easily found

in time O(n) as follows. For each face f € Fd we determine the x3-coordinate
of the point on the corresponding plane which projects to p*; specifically,
this x3-coordinate is

a(f) = = (a (D)%) (p¥) + ny(£)%y (p%) + d(£))/ny(E).

Let '= min a(f) and " = max a(f). Then &'
n,(£) <0 ny(£) > 0

and ", with o' 2 ', are the x3-coordinaces of the extremes of the
segment which is the preimage of p* in &; we similarly define 8' and 8",
with 8' 2 8", for the analogous segment in 2, If the two segments overlap,

then any point in their common portion also belongs to the nonempty

intersection of & and 5. Otherwise assume, without loss of generality, 4

that a'" > 8', Then we define the near-sides of & and Z to be the sets of
<0} f 3 §
faces {fjlfj is a face of 4, n3(fj) 0 and ‘gilgi is a face of ,n3(gi) > 0},

respectively. Clearly both near-sides are obtained in time 0(|‘{7| + ‘VB') = 0(n)

by traversing, in a straightforward manner, the DCEL descriptions of &4 and 2. -
By projecting the near-sides of & and Z on the (xl,xz) -plane we obtain two
planar straight-line graphs (PSLG's) G67 and GF” with respective vertex !

= r

sets V; and V,. Thus we have:

Step 3. If the pre-images of p* in & and 2 under an x3-projection
have a common intersection, then halt, for any point in this intersection E
is internal to & N 3. Otherwise obtain G, and GB' (The pre-images of p*

are found in constant time; Gﬂ and G@ are found in time O(n).)

Let 2 be the closed domain contained in the intersection of 7* and ;3*.

For each point u € J it is convenient to define the function §(u), called ]

! i
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x3-discance, as follows. If a(u) and 3(u) are the x3-coordinates of the |

points on the faces of the near-sides of @ and 3, respectively, which

both project to u, then

5(u) = a(u) = B(u) .
Let us now analvze the function 3(u) defined on 2, Imagine superimposing

q; and G- to create a new vertex, conveniently called a pseudo-vertex,

at the intersection of each edge of qj with an edge of qs. Denoting by
V* the set of pseudo-vertices thus obtained, we can define a new PSLG G*
with vertex set W& UVg U Vk,  The vertices of V% and V; will be called | 9

true vertices. Thus the domain B is subdivided into regions by G*. Notice 9

that inside any region of q: the function a(v) is linear in the (xl,xz)

coordinates at v; similarly, for the function B(v) inside any region of 96'

Thus in any region induced by G* in J, the function §(v)=a(v) « B(v) is linear

in xl(v) and xz(v). Moreover, a(v) is convex-downward and 3(v) is coavex-
upward; it follows that 8(v) is a convex-downward function. We conclude

that the minimum of § occurs at a vertex of G*, Notice that |V*|, and

hence ‘z& U Vb U v*l,could be O(nz): in fact, it is not hard
to construct two planar graphs, each with v vertices, so that, when

superimposed, (v - 1)2 intersections of edges are obtained.

.
-

gty

Since, by hypothesis, a(p*) = a" and S(p*) = 8', we conclude that

— —— ey v -

§(p*) = a" - B' > 0. It follows that the intersection.of & and & is
anonempty if and oanly if, for some v € 5, §(v) < 0. Therefore, either we ﬂ
find one suéh point, or show that mén §(v) > 0. q

To this end, we begin by evalzatii; § at true vertices of G* in J. '
This is easily done if, for each a € z& we determine the region r(a) of GB
to which a belongs. If r(a) is not the infinite region of the plane in 4

the subdivision iaduced by qs, then r(a) corresponds to a unique face of

——
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the polyhedron &, and 5(a) is easily computed. Similarly, we can compute

§(b) for each b € Vé in 2. The determination of r(a) has been called the
location of point a in the planmar subdivisiom induced by 96 {5 ] and could

be done one point at a time. However, a faster algorithm has been recently
developed (6] for collectively locating all the points of a set., According

to this technique the members of %& can all be located in regions of the planar
subdivision induced by GB in time 0((c|‘%{+|Vél)logiVél), for some coastant c,
and, reciprocally, the members of Vé can all be located in regions of the
planar subdivision induced by Gz in time 0((‘W§‘+Clvél)1°8|W§‘)° Therefore

in ctotal time O((|Vgl+|vghloglvgl«lvgh = oC(lv l+|vgDlog( [V [+ |vg])) = 0(alogn)
all the true vertices can be located. Once a vertex, say,of j% has been

located in GB’ the x3-coordinates of its preimages in & and 2 are obtained

in constant time. This is summarized as follows:

Step 4. Locate each true vertex of Q; in the planar subdivision induced
by 93 and vice versa. (This can be done in time O(nlogn) using the
algorithm of [6].) If there are no true vertices in .8 go to Step 7.

Else evaluate 5 at each true vertax of G*. (This can be done in

additional time O(mn).)

Suppose at first that there are true vertices in .®, and assume that
for some true vertex v (say, v < Y%) we have 5(v) € 0. The vertical
line through v intercepts the near-side of & in a vertex a and the near-
side of 3 in a point b, and obviously a(v) = x3(a) 5 x3(b) = 3(v). Thus,

we have a point p* for which a(p*) > 8 (p*) and a point v for which

"

— vy -
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E a(v) € P(v). Consider now the plane, parallel to the x,-axis and

3
5
containing the points p* and v. The intersection of this plane with
the two polyhedra & and 2 is shown in figure 3 (where the points p'

and p'" have been defined). By convexity, the segments ap' and bp"

are entirely contained in & and @ respectively, and so their point of
intersection q belongs to the intersection of & and 2. The coordinates

of q are thus obtained by straightforward calculations.

r pIP
Figure 3. Fiading a point in the intersection when S(p*) > 0 and 3(v) < 0.

Assume next that S(v) > 0 for all true vertices v € Y} U Vé, and
g . let v* be a true vertex such that § (v*) = min {S(V)lv € Y% U VEQ. |
We cyclically test each of the edges of & incident upon v* to determine
whether the function 5 decreases as one moves along the edge away from v*,

If it fails to decrease for all edges incident upon v¥*, then v* is an

absolute minimum of the function §. Since S(v*) > 0, the polyhedra &

and 5 do not intersect.
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Step 5. Obtain v*. If v* is an absolute minimum and 5 (v¥) > 0,
nalt, for ¥ N 3@ = ; if d(v¥) > 0 but v* is not an absolute minimum, go
to Step 6; if 3 (v¥) < 0, then there is a point q € 4 N B, obtained as
the intersection of the diagomals of the trapezoid formed by the
x3-projeccion pre-images of p* and v* in & and B. (All of this work can

be done in time O(n).)

The remaining case is when §(v¥) > 0 but v* is not an absclute minimum.
Then 5 decreases as one moves along at least one of the edges - call it e -
incident upon v*, and on this edge we locate a pseudo-vertex p. Omne such
pseudo-vertex must exist, for otherwise the minimality of & (v¥*) would be
contradicted. Lat r(v*) be the region of 93 to which v* belongs (known
from Step &); to locate pseudo-vertex p, we cyclically test each edge of

)
r(v*) in turn and find the one which intersects e.(1 Clearly S(p) < §(v¥).

Step 6. Locate a pseudo-vertex p adjacent to v¥, such that §(p) < §(v¥).
If 5(p) < 0, then, since §(v¥) > 0, there is a point q € Z N 2, which may

be found as in Step 5; otherwise go to Step 7.

We must how consider two cases. The first is when there are no true
vertices in 8 (Step &4); then the boundaries of<7* and 5* must intersect,
so the point p* may be chosen at an intersection of these boundaries and
is therefore a pseudo-vertex. The second case is when 5(p) > 0 (Step 6).
Both these cases are treated by using an algorithm, called the wandering
algorithm, which wanders among the pseudo~vertices of G* and which uses

at most O(n) time. Thus we have:

(1)If v* happens to belong to more than one region of Gz, then the edges of
all such regions may have to be tested to find the unique one which intersects
e. In any case, the number of such tests is 0(m).

M
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Step 7. If the test of Step 4 fails use p*, while if the test
of Step 6 fails use p, as the starting point of the wandering algorithm
(to be described below), either to find a pseudo-vertex ; such that
5(p) € 0, to which the method of Step 5 can be applied, or find a
pseudo-vertex Py such that S(pm) = vfgnv*ﬁ(v). (We shall show below that {
the wandering algorithm runs in time O(n).)

Before describing the wandering algorithm, we observe that the starting
point of it is a pseudo-vertex, either p or p¥*, which has a smaller value of 3 !
than any true vertex., If we imagine, for purposes of proof, a contour line of

S passing through p or p* we enclose a region R'E L which contains a

pseudo-vertex pm having minimum S(pm). We note that R must be convex.

Also let ;& and E;, be the sets of edges of G; and G_ respectively which
< [~

intersect R. Since no true vertices lie in R, each edge in E! U E] !
i « ~

must separate ¥ into two convex regions. No two edges in g& can

intersect in », nor can two edges in E;. Also, the function § is convex
downward as one travels along any edge of g& U Ek and its minimum must lie {
somewhere in R, because the boundary of R is a contour line for 5. We

shall call this point on an edge e € g% U qé where § has

a8 minimum value, a minimum point of the edge e. It is unique except in

it

degenerate cases. The value of § at this point will be called the

minimum value of the edge e and denoted by min(e). {
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We assume momentarily that the faces of both polyhedra are triangles
and, if they are not, that we shall triangulate both polyhedra. Notice that
in the triangulated pelyhedra the number of faces remains less than
twice the number n of vertices and the number of edges remains less than
three times a, so they both remain O(n). Each pseudo-vertex p' in ® is
the intersection of two edges e; & %% and e; & Eé and is therefore shared

by four regions in G*; the union of these four regions is referred to as

the crown of p' and is the locus of the points which can be reached from p'

without crossing any edge. Notice that e; is shared by two triangular
faces of 97’ whose union is a quadrilateral region; a similar remark holds
for eé. Thus the crown is the intersection of these two quadrilateral
regions, and the crown boundary contains either 8, or 10, or 12 pseudo-
vertices (see figure 4 a, b, c, respectively). The fact that the number

of crown vertices is bounded is a consequence of the hypothesis that the

polyhedra have been triangulated.

iE
ot 7’-/" S
. [ lad A R
/ ‘/ e'b / \\
‘ '/ / \

\/ /
/N 4 £

4
/ \\ |/ 7
4 ~ é/ -
- -
- -

(a) (b) (¢)

Figure 4. Illustration of the possible cases for the crown of a pseudo-
vertex.

! and e', the pairs

Given any pseudo-vertex p' as the intersection of e

of triangles bordering these two edges can be obtained in constant time
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from the doubly-connected edge lists describing Z and 2 respectively. Once
these triangles are available, the pseudo-vertices in the crown can also be
obtained in time bounded by a constant, and so can their values of 5. We
now give the

Advancing step of the wandering algorithm: A pointer is moved from the

current pseudo-vertex p' to a pseudo-vertex p' which attains the minimum

value of 5 among all pseudo-vertices in the crown of p’'.

Of course, the step is voided and the algorithm terminates if p'

b
in p': in this case if § is positive the two polyhedra do not intersect

attains the minimum value of § along the edges e; and e intersecting
(case (iii) in Section 5). 1In the other case (§ decreases either along
e; or e];) the advancing step is effected, and in actual practice can be

carried out without exploring the entire crown of p', but simply following

a path of edges along which § decreases.
An additional algorithm simplification is that, as we shall show,
polyhedra & and 5 need not be triangulated before applying the wandering

algorithm. In fact, only those faces of Gd and GB will be triangulated

which are actually traversed by the wandering algorithm. Specifically, let

p', the intersection of e' and e', be the current pseudo-vertex (see Figure 5 ).
a *b

Referring for simplicity only to polyhedron &, let £, and fz be the two

1
faces of Gd sharing e;. In the doubly connected edge list of Gd we can

Py

Figure 5. Partial triangulation of 4.
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obtain in constant time the edges e; and e;' which follow e; in the edge-sequences
of fl and fz, respectively. If El is not a triangle, we connect the non-

overlapping extremes of e; and e;, and we do likewise for fz. The

introduction of any such new edge in the doubly-connected edge list requires

the modification of two pointers and the use of two other cells for con-

struction of the appropriate record. All this can also be done in constant

time. We conjecture that this insertion is not really necessary, but the E
present proof on the time performance of the algorithm depends upon it. ;

Since the wandering algorithm moves from p' to p" omly if §(p") < §(p'),

it is obvious that the algorithm will terminate at a point pm such that
5(pm) is the minimum value of § for all pseudo-vertices in R. Even though
the total number of pseudo-vertices in R could be O(nz), we shall now prove

that the number of advancing steps is at most O(n).

Recall that for an edge e in either 97 or QE’ min(e) denotes the minimum

value of 5 on e. Let pseudo-vertex p' be the intersection of e; & g% and

n

S—

eg € gé; we now define m(p') = max(min(e'a),min(eg)). Clearly S(p') =2 m'(p).

Lemma 1: Let p' be a pseudo~vertex in R; if m(p') = 5(p“), then

d(p') = a(p') = §(py)-

Proof: Let us assume the contrary and obtain a contradiction. In figure 6

let a' and b' represent minimum points on e; and eé respectively which are .
nearest to p'. By our assumption, §(a') = §(b') = 6(pm) and hence by

convexity, every point along the line segment I between a' and b’ also has

this same § value. Let a, be the pseudo-vertex closest to a' in the portion

of e; between a' and p' (possibly, a, and p' coincide). The line segment i

crosses a region of G* bordering with a'al. Since the value of 5 is linear

within this region and it achieves the minimum value S(pm) at an interior
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Figure 6. Illustration for the proof of a(p') = 5(pm) = 5(p') = m(p').

point, it must have this value throughout the entire region. Hence,
5(31) = S(pm), contradicting our assumption that a' is the nearest minimum
point to p' on e;. This proves §(p') = 6(an){]
Assuming now that 5(p') > é(pm), we see by Lemma 1 that m(p') > S(pm) When
the wandering algorithm is applied at p', it steps to a new pseudo-vertex p".
Lemma 2: m(p") < m(p').
Proof: We distinguish two cases:

(1) p' and p" do not belong to the same edge. Let p' be the inter-

b
figure 7(a)). Let Py be the pseudo-vertex in R defined above.

section of e; and e' and let p'" be the intersection of e; and eg (see

We claim that a straight line from P, to p' cannot intersect the interior

of the region f of G* to whose boundary p' and p'" belong, except at p".

In fact, if it did, any such point of intersection would, by convexity,
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Figure 7. Illustration of the proof that m(p") < m(p').

have a value of § as low as &6(p"). Since p" is a minimum point of £, this

would imply that all the points of f have the same value of §, contradicting
5(p') >56(p"). As a comsequence, either e; or e; separates p_ from p',s0
Py belongs to the shaded regions in figure 7(a).

Assume, without loss of generality, that p', and hence e;, is separated

from Py by e:. Then, since e; does not cross e: in R, the straight line

between Pn and the minimum point of e; intersects e; in a point a". By
convexity, min(e;) 2 §(a"), with equality occurring only if min(e;) = S(pm).
Assuming equality, since we have seen that m(p') > é(pm) and we have

min(e;) = §(a") = min(e:) = a(pm),we obtain m(p') > min(e:). Assuming instead
that min(e;) > §(a"), since by definition m(p') = min(e;) and §(a") 2 min(e:),

we also obtain m(p') > min(e:).

Two subcases must be considered. First, assume p', and hence eg, is also

separated from Pm by e!'. Then by an identical argument m(p') > min(eg), SO

b

m(p') > m(p") = mnx(min(e:),min(eg)). Second, assume it is not, as shown in

figure 7(a). We now show that min(eg) s min(e:) thus reaching the same conclusion.

—————————————ee———
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In fact, since 5 (p") is the minimum value in f, the minim point on

e; occurs either at p" or along e; on the opposite side of p'" from £, A
straight line drawn between this minimum point and pm intersects eg at a
point b" such that §(b") S’min(e;), by the convexity argument used earlier.
But §(b") 2 min(e!'), whence min(e:) 2 min(eg), as claimed.

(2) p' and p" belong to the same edge. Without loss of generality, let

p' be the intersection of e; and eg and let p'" be the intersection of e; and
eé (see figure 7(b)). By the convexity argument, e; is separated from

Py by e; (L.e., pm belongs to the shaded region). As in case (l), we

can show that m(p') 2 min(e;) > min(e;). To prove that min(eg) < min(e;)

we note that the minimum point of e; must be p'", for otherwise p'" would not

attain the minimum of § in the crown of p'. Thus

m(p") = max(min(e;), min(eg)) = min(e;) <m(p'), as claimed.[]
Theorem: The number of advancing steps performed by the wandering

algorithm is O(n).

Proof: We have shown that as the wandering algorithm moves from one

pseudo-vertex p' to the next, the value of m(p') decreases at each
step. Each value of m(p') is the minimum value of one of the edges in

] '
qj U E@'

Hence, the number of distinct values which m(p') can assume
is no greater than l%&' + lEé[, which is O(n). The number of steps
taken by the algorithm therefore is O(n).(J

Since the time taken by the wandering algorithm is O(n), the time

taken by the entire algorithm remains O(nlogn).
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5. An Application: Finding a Separating Plane

The preceding method can be used to solve efficiently the important problem
of linear separability in three dimensions, i.e., testing whether two finite sets
of points A and B are separable by means of a plane, and, if so, finding one
such plane.

Since two finite sets of points are linearly separable if and only if their
coavex hulls do not intersect [8), we begin by obtaining the respective convex
hulls of the sets A and B by means of the Preparata-Hong algorithm [3]. Letting
|A| + |B| = n, this task, which is completed in time O(nlogn), yields two
convex polyhedra & and 8 such that |Va| + IVBI < n. We now apply to & and B
the algorithm described in Section 4: any time the algorithm declares that &
and B do not intersect, we construct a separating plane.

We now recall that & and B are found to be disjoint in three exclusive
cases, already referred to in Section 4;

(1) after projecting R(Z) and R(S) on the plane (xl,xz), the polygons

a* and B% are disjoint; ;
(ii) after evaluating § at all true vertices of G* we find that

S(vk) = min 6§(v) > 0 and v* is an absolute minimum;
v € Vc'7 U Vé

(i11) after applying the wandering algorithm we find that 6(pm) > 0.
In case (1) it i{s sufficient to find a straight line £ separating
% and B*, since a plane containing £ and perpendicular to the plane (xl,xz)
separates & and 5. The line L can be found in time O(n) by an obvious
modification of the Preparata-Hong algorithm for planar convex hulls ([3],9. 90) .
Cases (ii) and (iii) can be handled jointly by the following considerations.

Rather than constructing one separating plane, we construct a locus of separating
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planes and make a selection in this locus. Let u be the point at which the

algorithm terminates with the result that & and § do not intersect; obvicusly,

either u = v* or u = Py Also let u' and u" be the pre-images of u (with

respect to x3-projection) in 4 and S, respectively. Assume at first that
u = v and, without loss of generality, let u' be a vertex (in Va). Consider the
cycle F of cue faces sharing u'; for each f € F, imagine applying the vector
(nl(f),nz(f),na(f)) = n(f) to the origin; recall that n(f) is normal to f and
pointing toward the exterior of . Then the set of directions {n(f) |£ € F}
defines a convex cone cd such that any direction internal to it is normal to
a supporting plane of 4. Notice now that, when u = Py» point u' belongs to some
edge e of 4 and Cd degenerates into a plane wedge delimited by the normals to
the two faces of & which share e a
For u" the convex cone C@ 1§ analogously defined, with the only modification
that the directions of the vectors n(f) are reversed. The cone can assume the follow-
ing forms: if u = v&, then CB is either nondegenerate, or a plane wedge, or
a half-line, depending upon whether u" in 5 is either a vertex,or a point in an
edge, or a point in a face, respectively; if u = Pp? then CG is a plane wedge.
The solution to our problem is Cd n CB' Notice, however, that this
intersection consists of a single ray in the following two cases: (1) u = Py
in which case they ray is the common normal to the edges which contain u' and u"
in 7 and S5, respectively; (2) u = v* and u" is a point in a face of 5, in which
case the ray i{s the normal to this face. In the remaining cases (u = v*, u' is
a vertex, and u" is either a vertex or a point in an edge) we first find a
plane which intersects ca in a bounded polygon; this can be done in time
O(n) as follows. For each face f € F, let point t(f) be the terminus of
the vector n(t). Let f, and f, be two consecutive faces in the cycle F.

We consider the set of planes determined by triples of points (t(fl),t(fz),t(f ))

3
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with j ¢ 1,2 and fJ € F. For each such plane, we call positive the half-
plane bounded by the straight line £ through t(fl) and t(fz) and containing
t(fj). The half-planes of this set have line £ in common and are comprised
between two extreme ones, one of which intersects all the edges of Cz

the latter defines our desired plane. Next we intersect CB with this plane and
obtain either a polygon or a straight-line segment: in any case the problem is
reduced to finding the intersection of two plane polygons, which can be solved
in time O(n) [1]. This enables us to find a vector orthogonal to a

separating plane; the construction is completed by requiring that the plane
contain a point internal to the segment u'u',

Thus, we conclude that the construction of a separating plane of two

three-dimensional sets of points, if it exists, can be effected in time

O(nlogn).

i

e
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Appendix

As we said in Section 2, the vertex-to-edge list of a planar graph

is a collection of edge lists, referred to as input edge lists, stored

in arrays H[1:n], VERTEX([1:2n], and NEXT[1:2n]. In the DCEL, we can

identify n cycles of edges around a vertex, called vertex cycles, and

f cycles of edges around a face, called face cycles. The construction of
the DCEL is carried out in two phases. In the first phase, we fill the

arrays V1, V2, Pl, and P2, hereby constructing the vertex cycles. In the

second phase we generate the names of the faces and fill the arrays Fl and
F2, hereby constructing the face_cycles.

Informally, phase-1 of the algorithm works as follows. The input
edge 1i:'ts are scanned one at a time, in the order vl,vz,...,vn. While
scanning the input edge list of vd an edge (vj,vi) is entered into the DCEL
only if 1 > j: in this manner we ensure that each edge is entered only once.
Thus any edge (vj,vh) with h < j is already present in the DCEL, since it
was entered while scanning the input edge list of Vi earlier in the
execution of the algorithm. All that is needed now is therefore the
realization of the appropriate linking of such (vj,vh) into its position

in the vertex cycle of v To effect it we must determine the location of

j.
sV, ) in the DCEL. This can be done as follows,with additional storage

(v

J
O(n). Suppose that, while scanning the input edge list of Vi the edge

(vh,vj) is to be entered (obviously h < j). This edge is linked permanently
into the vertex cycle of Ya and temporarily into a list of edges of the

form (vr, ), with r < j. The members of the latter list referred to as

v
J
the temporary list of v

, are linked in reverse order to that of their

J

{ occurrence during the execution of the algorithm. Thus this list can be managed

.
M

N

™
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e

with only one pointer stored in an array LAST[1:n]. With these provisions,

the location of (v ,vj) is easily obtained: in fact, prior to linking the

vertex-cycle of v, we scan the temporary list of v.1 starting from I.AST[]]

h|
and store the location of (vh,vj) into cell B[h] of an auxiliary array

E B{1:n]. Notice that the latter array is only scratch memory and will be

used repeatedly for each vj. Therefore the additional storage needed consists

of the arrays LAST aad B, both of size 0O(n), and of program variables

a;, 85, U, € B, &

We can now give the algorithm.

CONSTRUCT VERTEX CYCLES ,i

1. begin a~1

2. for j -~ 1 step 1 until n do IAST[j) ~ A (Comment: initialize IAST)

3. for § < 1 step 1 until a do

4. begin £ - 1AST[j]) :
5. While £ ¥ A do '
6. begin p - V1[£]

7. Blp] ~ ¢
8. L - P2(2]

end

Comment: Loop 5-8 fetches the locations of all

— ————————— vy v

edges (vt,vj) with r < j by scanning the temporary

list of vj and stores them into the array B. This ﬁ

step is obviously void for j = 1.

9. t - Hl3l,

10. r ~ VERTEX[t]
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|

11. If r > j then |
3. begia vi[a] - 3, v2[al - r
1. av[j]-a0-a,u-1

14. P2[a] ~ 1AST[r]
15. 1aST[r] - a |
16. a ~ a+l |

end Comment:Steps 10-15 initialize the vertex cycle for v

3

17. else HV[j] ~ a, - Blr], u<~-2
Comment: Steps 8-17 process the first member (vr,vj)
of the input edge list of vj. If this edge was not

previously encountered steps 11-16 are executed;
specifically, the edge is entered in step 12. Variable
a, is used to denote the location of the last member

of the vertex cycle being constructed.

18. while NEXT(t] & H[j] do

19. begin t ~ Next(t] :
20. r - VERTEX(t] !
21, If r > j then ‘
22, begin Vifal ~ j, v2[a] ~ r '
23, P2(a] - 1asT(r]

2., 1AsT(r] ~ Pu[ao] - a, 1 3
25, a -a, u-~ 1 :
26. a - at+l | ’
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27. begin Pu[ao] ~B[r)
28. &, - Blr], u~2
end
end
29, Pu[ao] ~ wv(j]
end
end

Comment: Steps 18-29 complete the construction of the vertex

cycle for v Specifically, loop 18-28 successively processes

5
the edges incident on vj and either enters them into the vertex
cycle (Steps 21-26) or simply links them into it (Steps 27-28).
Step 29 closes the vertex cycle.

end

To evaluate the running time of the algorithm just described, notice
that each eadge is processed exactly twice: once to be entered into a vertex
cycle and into a temporary list, the second time to be linked appropriately.
Both these operations take constant time, and since the number n of edges is
0(n), O(n) time is used to fill the arrays V1, V2, Pl, and P2.

To complete the construction of the DCEL we must construct the face
cycles., The next algorithm, CONSTRUCT FACE CYCLES, starts from the partial
DCEL which is produced by the CONSTRUCT VERTEX CYCLES procedure. The algorithm
will scan the DCEL, using an integer a as a counter. if Fl[a] and F2(a] have
already been filled,it advances to the subsequent edge; otherwise it generates
the name of new face (using a counter s) and traces the sdges enclosing it
filling the appropriate F-fields. The algorithm terminates when 2m

filling operations have been performed: an integer k is used to control

this event.

e M
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CONSTRUCT FACE CYCLES | 1
1. begin for j - 1 step 1 until m do F1[3] « F2[§] ~ A
2. acsa-k~1
3 While k < 2m do
4. begin If F1[a] # A and F2[a] # A then a = a+l
5. else begin If Fl{a] = A then u =~ 1 else u ~ 2
6. Fu[a] -~ s, ¢ -~ Vu[a]), HF[s] ~ 8y - a , k- kil
7. a ~ Pu(a]
8. While a ¢ a, do
9. begin If V1[a] = c then u ~ 2 else u~1
‘ 10. Fula] - s, ¢ - vu[a], k -~ k+l i
, i1. a - Pula] |
| end
| 12, s ~ s+l
end !
o .

Since in the latter algorithm each field F1l[a] or F2[a] is being

-
z

processed at most twice (once to be filled in steps 6 or 10, and possibly
once to be just inspected in step 4), the running time is 0O(n). This and

the analogous result for the vertex cycle algorithm substantiate our claim

— e ————— v
s

that the DCEL can be obtained in time 0O(n) from the original vertex-to-edge

S

list.

e




